Simulating and Forecasting the Cumulative Confirmed Cases of SARS-CoV-2 in China by Boltzmann Function-based Regression Analyses Institutional Repository Document uri icon

abstract

  • AbstractAn ongoing outbreak of atypical pneumonia caused by the 2019 novel coronavirus (SARS-CoV-2) is hitting Wuhan City and has spread to other provinces/cities of China and overseas. It very urgent to forecast the future course of the outbreak. Here, we provide an estimate of the potential total number of confirmed cases in mainland China by applying Boltzmann-function based regression analyses. We found that the cumulative number of confirmed cases from Jan 21 to Feb 14, 2020 for mainland China, Hubei Province, Wuhan City and other provinces were all well fitted with the Boltzmann function (R2 being close to 0.999). The potential total number of confirmed cases in the above geographic regions were estimated at 95% confidence interval (CI) as 79589 (71576, 93855), 64817 (58223, 77895), 46562 (40812, 57678) and 13956 (12748, 16092), respectively. Notably, our results suggest that the number of daily new confirmed cases of SARS-CoV-2 in mainland China (including Hubei Province) will become minimal between Feb 28 and Mar 10, 2020, with 95% CI. In addition, we found that the data of cumulative confirmed cases of 2003 SARS-CoV in China and Worldwide were also well fitted to the Boltzmann function. To our knowledge this is the first study revealing that the Boltzmann function is suitable to simulate epidemics. The estimated potential total number of confirmed cases and key dates for the SARS-CoV-2 outbreak may provide certain guidance for governments, organizations and citizens to optimize preparedness and response efforts.

altmetric score

  • 2.75

author list (cited authors)

  • Fu, X., Ying, Q. i., Zeng, T., Long, T., & Wang, Y.

citation count

  • 7

complete list of authors

  • Fu, Xinmiao||Ying, Qi||Zeng, Tieyong||Long, Tao||Wang, Yan

Book Title

  • medRxiv

publication date

  • February 2020