Individual-based modeling of COVID-19 transmission in college communities Institutional Repository Document uri icon

abstract

  • AbstractThe ongoing COVID-19 pandemic has created major public health and socio-economic challenges across the United States. Among them are challenges to the educational system where college administrators are struggling with the questions of how to reopen in-person activities while prioritizing student safety. To help address this challenge, we developed a flexible computational framework to model the spread and control of COVID-19 on a residential college campus. The modeling framework accounts for heterogeneity in social interactions, activities, disease progression, and control interventions. The relative contribution of classroom, dorm, and social activities to disease transmission was explored. We observed that the dorm has the highest contribution to disease transmission followed by classroom and social activities. Without vaccination, frequent (weekly) random testing coupled with risk reduction measures (e.g. facial mask,) in classroom, dorm, and social activities is the most effective control strategy to mitigate the spread of COVID-19 on college campuses. Moreover, since random screening testing allows for the successful and early detection of both asymptomatic and symptomatic individuals, it successfully reduces the transmission rate such that the maximum quarantine capacity is far lower than expected to further reduce the economic burden caused from quarantine. With vaccination, herd immunity is estimated to be achievable by 50% to 80% immunity coverage. In the absence of herd immunity, simulations indicate that it is optimal to keep some level of transmission risk reduction measures in classroom, dorm, and social activities, while testing at a lower frequency. Though our quantitative results are likely provisional on our model assumptions, extensive sensitivity analysis confirms the robustness of their qualitative nature.HighlightsIndividual-based model for college communities with structured students interactions.We evaluated COVID-19 control measures needed for in-person college reopening.Without vaccination, high testing frequency is paramount for outbreak control.With high vaccination coverage, some NPIs are still needed for outbreak control.General access website tool was developed for the public to explore simulations.Graphic Abstract

altmetric score

  • 1

author list (cited authors)

  • Huang, Q., Ndeffo-Mbah, M., Mondal, A., Lee, S., & Gurarie, D.

citation count

  • 3

complete list of authors

  • Huang, Qimin||Ndeffo-Mbah, Martial||Mondal, Anirban||Lee, Sara||Gurarie, David

Book Title

  • medRxiv

publication date

  • June 2021