Summer diatom blooms in the eastern North Pacific gyre investigated with a long-endurance autonomous surface vehicle Institutional Repository Document uri icon

abstract

  • Satellite chlorophyll (chl) observations have repeatedly observed summertime phytoplankton blooms in the North Pacific subtropical gyre (NPSG), a region of open ocean that is far removed from any land-derived or Ekman upwelling nutrient sources. These blooms are dominated by N2-fixing diatom-cyanobacteria associations of the diatom genera Rhizosolenia Brightwell and Hemiaulus Ehrenberg. Their nitrogen fixing endosymbiont, Richelia intracellularis J.A. Schmidt, is hypothesized to be critical to the development of blooms in this nitrogen limited region. However, due to the remote location and unpredictable duration of the summer blooms, prolonged in situ observations are rare outside of the Station ALOHA time-series off of Hawaii. In summer, 2015, a proof-ofconcept mission using the autonomous vehicle, Honey Badger (Wave Glider SV2), collected near-surface (<20m) observations in the NPSG using hydrographic, meteorological, optical, and imaging sensors designed to focus on phytoplankton abundance, distribution and physiology of this bloom-forming region. Hemiaulus and Rhizosolenia cell abundance was determined using digital holography for the entire June-November mission. Honey Badger was not able to reach the 30N subtropical front region where most of the satellite chl blooms have been observed, but near-real time navigational control allowed it to transect two blooms near 25N. The two taxa did not co-occur in large numbers, rather the blooms were dominated by either Hemiaulus or Rhizosolenia. The 2-4 August 2015 bloom was comprised of 96% Hemiaulus and the second bloom, 15-17 August 2015, was dominated by Rhizosolenia (75%). The holograms also imaged undisturbed, fragile Hemiaulus aggregates throughout the sampled area at ~10 L-1. Aggregated Hemiaulus represented the entire observed population at times and had a widespread distribution independent of the SEP. Aggregate occurrence was not consistent with a density dependent formation mechanism and may represent a natural growth form in undisturbed conditions. The photosynthetic potential index (Fv:Fm) increased from ~0.4 to ~0.6 during both blooms indicating a physiologically robust phytoplankton community in the blooms. The diel pattern of Fv:Fm(nocturnal maximum; diurnal minimum) was consistent with macronutrient limitation throughout the mission with no evidence of Fe-limitation despite the presence of nitrogen fixing diatom-diazotroph assemblages. During the 5-month mission, Honey Badger covered ~5690 km (3070 nautical miles), acquired 9336 holograms, and reliably transmitted data onshore in near real-time. Software issues developed with the active fluorescence sensor that terminated measurements in early September. Although images were still useful at the end of the mission, fouling of the LISST-Holo optics was considerable, and appeared to be the most significant issue facing deployments of this duration.

altmetric score

  • 0.25

author list (cited authors)

  • Anderson, E. E., Wilson, C., Knap, A. H., & Villareal, T. A.

citation count

  • 0

complete list of authors

  • Anderson, Emily E||Wilson, Cara||Knap, Anthony H||Villareal, Tracy A

Book Title

  • PeerJ Preprints

publication date

  • May 2018