Dynamic real-time subtraction of stray-light and background for multiphoton imaging.
Academic Article
Overview
Identity
Additional Document Info
View All
Overview
abstract
We introduce a new approach to reduce uncorrelated background signals from fluorescence imaging data, using real-time subtraction of background light. This approach takes advantage of the short fluorescence lifetime of most popular fluorescent activity reporters, and the low duty-cycle of ultrafast lasers. By synchronizing excitation and recording, laser-induced multiphoton fluorescence can be discriminated from background light levels with each laser pulse. We demonstrate the ability of our method to - in real-time - remove image artifacts that in a conventional imaging setup lead to clipping of the signal. In other words, our method enables imaging under conditions that in a conventional setup would yield corrupted data from which no accurate information can be extracted. This is advantageous in experimental setups requiring additional light sources for applications such as optogenetic stimulation.