Mid-infrared frequency doubling using strip-loaded silicon nitride on epitaxial barium titanate thin film waveguides.
Academic Article
Overview
Identity
Additional Document Info
View All
Overview
abstract
Broadband mid-infrared (mid-IR) frequency doubling was demonstrated using nonlinear barium titanate (BTO) thin films. The device has a strip-loaded waveguide structure consisting of top silicon nitride (SiN) strips and an underneath BTO guiding layer. The epitaxial BTO was deposited on a strontium titanate (STO) substrate by pulsed-laser deposition. Through a SiN grating coupler, the pumping mid-IR light at wavelength =3.30-3.45m was coupled into the nonlinear BTO layer, where the spectrum of the near-infrared (NIR) second-harmonic generation was characterized. The developed BTO waveguides provide a platform for mid-IR nonlinear integrated photonics and on-chip quantum optics.