Benzyl Butyl Phthalate Induced Early lncRNA H19 Regulation in C3H10T1/2 Stem Cell Line. Academic Article uri icon


  • Exposure to endocrine-disrupting chemicals used in plastic manufacturing may contribute to the current obesity and diabetes epidemic. Our previous study demonstrated that benzyl butyl phthalate (BBP) induced adipogenesis in the C3H10T1/2 stem cell line. Here we investigated if BBP deregulated long noncoding RNA H19 and its downstream pathway and whether BBP plays a role in the insulin signaling pathway during adipocyte diiferentiation. Cells treated with an 8 day BBP regimen showed that H19 expression was decreased at day 2 with 50 M BBP exposure (p < 0.05). However, no significant changes were observed from day 4 to day 8. Expression of miRNA-103/107, H19 regulated miRNAs, was upregulated at day 2 (p < 0.05) but not from day 4 to day 8. Similarly, expression of the let-7 family members (a, b, c, d, f, and g) was also significantly increased at day 2 (p < 0.05 or p < 0.01), except for let-7e. Both let-7 and miRNA-103/107 are targets of H19 and play roles in insulin signaling. Insulin receptor substrate (IRS)-1, one of the key insulin signal transduction regulators, was significantly downregulated from day 2 to day 8 (p < 0.05). Gene expression of insulin receptor (IR) and IRS-2 were not altered by BBP exposure. The ratio of IRS1/IRS2 was significantly decreased from day 2 to day 8. On day 4, phospho-Akt protein expression was significantly decreased (p < 0.05). In conclusion, BBP exposure may lead to metabolic dysregulation by altering vital epigenetic regulators such as lncRNA H19 and its target microRNAs at an earlier stage, which further regulates insulin signaling.

published proceedings

  • Chem Res Toxicol

altmetric score

  • 0.25

author list (cited authors)

  • Zhang, J., & Choudhury, M.

citation count

  • 10

complete list of authors

  • Zhang, Jian||Choudhury, Mahua

publication date

  • January 2021