Effect of maternal nutrient restriction on expression of glucose transporters (SLC2A4 and SLC2A1) and insulin signaling in skeletal muscle of SGA and Non-SGA sheep fetuses. Academic Article uri icon

abstract

  • Maternal nutrient restriction (NR) causes small for gestational age (SGA) offspring, which are at higher risk for accelerated postnatal growth and developing insulin resistance in adulthood. Skeletal muscle is essential for whole-body glucose metabolism, as 80% of insulin-mediated glucose uptake occurs in this tissue. Maternal NR can alter fetal skeletal muscle mass, expression of glucose transporters, insulin signaling, and myofiber type composition. It also leads to accumulation of intramuscular triglycerides (IMTG), which correlates to insulin resistance. Using a 50% NR treatment from gestational day (GD) 35 to GD 135 in sheep, we routinely observe a spectral phenotype of fetal weights within the NR group. Thus, we classified those fetuses into NR(Non-SGA; n = 11) and NR(SGA; n = 11). The control group (n = 12) received 100% of nutrient requirements throughout pregnancy. At GD 135, fetal plasma and gastrocnemius and soleus muscles were collected. In fetal plasma, total insulin was lower in NR(SGA) fetuses compared NR(Non-SGA) and control fetuses (P < 0.01), whereas total IGF-1 was lower in NR(SGA) fetuses compared with control fetuses (P < 0.05). Within gastrocnemius, protein expression of insulin receptor (INSRB; P < 0.05) and the glucose transporters, solute carrier family 2 member 1 and solute carrier family 2 member 4, was higher (P < 0.05) in NR(SGA) fetuses compared with NR(Non-SGA) fetuses; IGF-1 receptor protein was increased (P < 0.01) in NR(SGA) fetuses compared with control fetuses, and a lower (P < 0.01) proportion of type I myofibers (insulin sensitive and oxidative) was observed in SGA fetuses. For gastrocnemius muscle, the expression of lipoprotein lipase (LPL) messenger RNA (mRNA) was upregulated (P < 0.05) in both NR(SGA) and NR(Non-SGA) fetuses compared with control fetuses, whereas carnitine palmitoyltransferase 1B (CPT1B) mRNA was higher (P < 0.05) in NR(Non-SGA) fetuses compared with control fetuses, but there were no differences (P > 0.05) for protein levels of LPL or CPT1B. Within soleus, there were no differences (P > 0.05) for any characteristic except for the proportion of type I myofibers, which was lower (P < 0.05) in NR(SGA) fetuses compared with control fetuses. Accumulation of IMTG did not differ (P > 0.05) in gastrocnemius or soleus muscles. Collectively, the results indicate molecular differences between SGA and Non-SGA fetuses for most characteristics, suggesting that maternal NR induces a spectral phenotype for the metabolic programming of those fetuses.

published proceedings

  • Domest Anim Endocrinol

author list (cited authors)

  • Sandoval, C., Askelson, K., Lambo, C. A., Dunlap, K. A., & Satterfield, M. C.

citation count

  • 4

complete list of authors

  • Sandoval, C||Askelson, K||Lambo, CA||Dunlap, KA||Satterfield, MC

publication date

  • January 2021