NMR determination of Van Hove singularity and Lifshitz transitions in the nodal-line semimetal ZrSiTe
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We have applied nuclear magnetic resonance spectroscopy to study the distinctive network of nodal lines in the Dirac semimetal ZrSiTe. The low-T behavior is dominated by a symmetry-protected nodal line, with NMR providing a sensitive probe of the diamagnetic response of the associated carriers. A sharp low-T minimum in the NMR shift and (T1T)-1 provides a quantitative measure of the dispersionless, quasi-two-dimensional behavior of this nodal line. We also identify a Van Hove singularity closely connected to this nodal line, and an associated T-induced Lifshitz transition. A disconnect in the NMR shift and linewidth at this temperature indicates the change in electronic behavior associated with this topological change. These features have an orientation-dependent behavior indicating a field-dependent scaling of the associated band energies.