A New Unified Gas-Transport Model for Gas Flow in Nanoscale Porous Media Academic Article uri icon

abstract

  • Summary A new unified gas-transport model has been developed to characterize single-component real-gas flow in nanoscale organic and inorganic porous media by modifying the Bravo (2007) model. More specifically, a straight capillary tube is characterized by a conceptual layered model consisting of a viscous-flow zone, a Knudsen-diffusion zone, and a surface-diffusion zone. To specify the contributions of the viscous flow and the Knudsen diffusion to the gas transport, the virtual boundary between the viscous-flow and Knudsen-diffusion zones is first determined using an analytical molecular-kinetics approach. As such, the new unified gas-transport model is derived by integrating the weighted viscous flow and Knudsen diffusion, and coupling surface diffusion. The model is also comprehensively scaled up to the bundles-of-tubes model considering the roughness, rarefaction, and real-gas effect. Nonlinear programming methods have been used to optimize the empirical parameters in the newly proposed gas-transport model. Consequently, the newly proposed gas-transport model yields the most accurate molar fluxes compared with the Bravo (2007) model and four other analytical models. One of the advantages of the new unified gas-transport model is its great flexibility, because the Knudsen number is included as an independent variable, which also endows the newly proposed model with the capability to cover the full-flow regimes. In addition, the apparent permeability has been mathematically derived from the new unified gas-transport model. A series of simulations has been implemented using methane gas. It is found through sensitivity analysis that apparent permeability is strongly dependent on pore size, porosity, and tortuosity, and weakly dependent on the surface-diffusivity coefficient and pore-surface roughness. The increased viscosity can reduce the total molar flux in the inorganic pores up to 66.0% under the typical shale-gas-reservoir conditions. The viscous-flow mechanism cannot be neglected at any pore sizes under reservoir conditions, whereas the Knudsen diffusion is found to be important when pore size is smaller than 2 nm and pressure is less than 35.0 MPa. The contribution of surface diffusion cannot be ignored when the pore size is smaller than 10 nm and the pressure is less than 15.0 MPa.

published proceedings

  • SPE Journal

author list (cited authors)

  • Chai, D. i., Fan, Z., & Li, X.

publication date

  • January 1, 2019 11:11 AM