Maternal exposure to polycyclic aromatic hydrocarbons in South Texas, evaluation of silicone wristbands as personal passive samplers.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
BACKGROUND: Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health effects in children. Valid exposure assessment methods with accurate spatial and temporal resolution across pregnancy is a critical need for advancing environmental health studies. OBJECTIVE: The objective of this study was to quantify maternal PAH exposure in pregnant women residing in McAllen, Texas where the prematurity rate and childhood asthma prevalence rates are high. A secondary objective was to compare PAH levels in silicone wristbands deployed as passive samplers with concentrations measured using standardized active air-sampling techniques. METHODS: Participants carried a backpack that contained air-sampling equipment (i.e., filter and XAD sorbent) and a silicone wristband (i.e., passive sampler) for three nonconsecutive 24-h periods. Filters, XAD tubes, and wristbands were analyzed for PAHs. RESULTS: The median level of exposure for the sum of 16 PAHs measured via active sampling over 24h was 5.54ng/m3 (filters) and 43.82ng/m3 (XADs). The median level measured in wristbands (WB) was 586.82ng/band. Concentrations of the PAH compounds varied across sampling matrix type. Phenanthrene and fluorene were consistently measured for all participants and in all matrix types. Eight additional volatile PAHs were measured in XADs and WBs; the median level of exposure for the sum of these eight PAHs was 342.98ng/m3 (XADs) and 632.27ng/band. The silicone wristbands (WB) and XAD sorbents bound 1-methynaphthalyne, 2-methylnaphthalene, biphenyl following similar patterns of detection. SIGNIFICANCE: Since prior studies indicate linkages between PAH exposure and adverse health outcomes in children at the PAH levels detected in our study, further investigation on the associated health effects is needed. Data reflect the ability of silicone wristbands to bind smaller molecular weight, semivolatile PAHs similar to XAD resin. Application of wristbands as passive samplers may be useful in studies evaluating semivolatile PAHs.