Automated Multi-Zone Linear Parametric Black Box Modeling Approach for Building HVAC Systems Conference Paper uri icon

abstract

  • Optimal control algorithms such as distributed model predictive control (DMPC) offer tremendous potential in reducing energy consumption of building operations. Heating, ventilation and air-conditioning (HVAC) systems which form a major part of the building operations contain a large number of interconnected subsystems. One of the challenges associated with implementing DMPC is the development of reliable models of individual subsystems for prediction, especially for large scale systems. In this paper an automated method is proposed to develop linear parametric black box models for individual building HVAC subsystems. The modeling method proposed identifies the significant inputs, and the upstream and downstream neighbors of each subsystem before performing regression analysis to determine the model parameters. Automation of the model development makes the implementation of the model-based control algorithms much more feasible. The modeling method is then verified through an EnergyPLus model, and using data of a real office building.

name of conference

  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications

published proceedings

  • Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications

author list (cited authors)

  • Chintala, R. H., & Rasmussen, B. P.

citation count

  • 7

complete list of authors

  • Chintala, Rohit H||Rasmussen, Bryan P

publication date

  • January 2015