Investigation of Si-doped diamond-like carbon films synthesized by plasma immersion ion processing Academic Article uri icon

abstract

  • Silicon (Si)-doped diamond-like carbon (DLC) was prepared on Si(100) and polymethyl metha_crylate (PMMA) substrates using a C2H2SiH4Ar plasma immersion ion processing (PIIP) method. The chemical composition of the films was varied by adjusting the reactive gas-flow ratio of SiH4 to C2H2 during PIIP depositions. The influence of the Si dopant on the bonding structure, stress, and properties of the DLC films was investigated by using ion beam analysis techniques, Raman shift, ultraviolet/visible spectroscopy, and by analyzing the measured properties. The incorporation of Si up to 17.3 at.% produced a reduction in film stress and increased the density and optical band gap. The Si-doped DLC films also exhibited increased sp3 bonding and higher hardness (2528 GPa). Further increase in Si dopant, to above 22 at.%, caused a transformation from DLC to amorphous silicon carbide (a-SiC) that showed high hydrogen capacity, low hardness, and low stress. Pin-on-disk tribological tests of Si-doped DLC on PMMA showed greatly improved wear and friction properties related to the uncoated PMMA.

published proceedings

  • Journal of Vacuum Science & Technology A Vacuum Surfaces and Films

altmetric score

  • 3

author list (cited authors)

  • He, X. M., Walter, K. C., Nastasi, M., Lee, S., & Fung, M. K.

citation count

  • 44

publication date

  • September 2000