Accelerated five-component spiro-pyrrolidine construction at the air-liquid interface.
Academic Article
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
Multi-component reactions assemble complex molecules in a highly effective way, however, they often suffer from long reaction times. We demonstrate that acceleration of a five-component spiro-pyrrolidine construction can be achieved in microdroplets and thin films. The deposition method and mild heating are crucial factors for product formation. Three key intermediates were captured by mass spectrometry to elucidate the tandem reaction mechanism. We also found that hydrogen bonding can significantly flatten the energy barrier at the air-liquid interface.