Hows and Whys of Tumor-Seeking Dyes. Academic Article uri icon


  • Active targeting uses molecular fragments that bind receptors overexpressed on cell surfaces to deliver cargoes, and this selective delivery to diseased over healthy tissue is valuable in diagnostic imaging and therapy. For instance, targeted near-infrared (near-IR) dyes can mark tissue to be excised in surgery, and radiologists can use active targeting to concentrate agents for positron emission tomography (PET) in tumor tissue to monitor tumor metastases. Selective delivery to diseased tissue is also valuable in some treatments wherein therapeutic indexes (toxic/effective doses) are key determinants of efficacy. However, active targeting will only work for cells expressing the pivotal cell surface receptor that is targeted. That is a problem because tumors, even ones derived from the same organ, are not homogeneous, patient-to-patient variability is common, and heterogeneity can occur even in the same patient, so monotherapy with one actively targeted agent is unlikely to be uniformly effective. A particular category of fluorescent heptamethine cyanine-7 (Cy-7) dyes, here called tumor seeking dyes, offer a way to circumvent this problem because they selectively accumulate in any solid tumor. Furthermore, they persist in tumor tissue for several days, sometimes longer than 72 h. Consequently, tumor seeking dyes are near-IR fluorescent targeting agents that, unlike mAbs (monoclonal antibodies), accumulate in any solid lesion, thus overcoming tumor heterogeneity, and persist there for long periods, circumventing the rapid clearance problems that bedevil low molecular mass drugs. Small molecule imaging agents and drugs attached to tumor-seeking dyes have high therapeutic indices and long residence times in cancer cells and tumor tissue. All this sounds too good to be true. We believe most of this is true, but the controversy is associated with how and why these characteristics arise. Prior to our studies, the prevailing hypothesis, often repeated, was that tumor seeking dyes are uptaken by organic anion transporting polypeptides (OATPs) overexpressed on cancer cells. This Account summarizes evidence indicating tumor seeking Cy-7 dyes have exceptional accumulation and persistence properties because they covalently bind to albumin in vivo. That adduct formation provides a convenient way to form albumin-bound pharmaceuticals labeled with near-IR fluorophores which can be tracked in vivo. This understanding may facilitate more rapid developments of generally applicable actively targeted reagents.

published proceedings

  • Acc Chem Res

author list (cited authors)

  • Usama, S. M., & Burgess, K.

citation count

  • 12

complete list of authors

  • Usama, Syed Muhammad||Burgess, Kevin

publication date

  • May 2021