Asynchronous compressed beamformer for portable diagnostic ultrasound systems Academic Article uri icon

abstract

  • State-of-the-art portable ultrasound imaging systems employ a small transducer array and a low carrier frequency to fit stringent constraints on power and form factor, and this tends to compromise the ultrasound imaging quality. In this paper, we present a low-complexity low-power asynchronous compressed beamformer (ACB) for portable diagnostic ultrasound. The proposed ACB integrates asynchronous sampling and compressive sensing (CS), and is capable of reducing data conversion power and handling a large data volume at the mixed-signal interface. A high-rate continuoustime ternary encoding (CT-TE) scheme eliminates the need for interpolation filters and coordinate rotation digital computer (CORDIC) units typically used in a conventional architecture. A split-projection least squares (SPLS) signal reconstruction algorithm is applied that replaces high-cost nonlinear signal recovery with a series of low-complexity and independent linear problems. Experiments with measured ultrasound data demonstrate the proposed ACB architecture, and the SPLS reconstruction algorithm achieves 9-fold data compression compared with Nyquist sampling.

author list (cited authors)

  • Zhou, J., Hoyos, S., & Sadler, B. M.

citation count

  • 9

publication date

  • November 2014