Eskandari Halvaei, Mostafa (2011-10). Improving Open Channel Network Operation Using Gate Control Support Model Developed with ArcGIS Geoprosessing Tools. Master's Thesis. Thesis uri icon

abstract

  • Many efforts have been conducted for improving the operation and management of open channel networks. Implementing simulation models and software is an effective step in achieving better operation of control structures in open channel networks. The purpose of this study was to develop a tool in ArcGIS for assisting the open channel network managers in operating flow control structures. This model presents a time schedule for gate operation based on the demands at turnouts through the water usage schedule of the network. The developed model was designed to be added as a tool to ArcToolbox in ArcGIS. Any ArcGIS user who has access to ArcView or ArcInfo can add this tool to ArcToolbox. Using ArcGIS Geoprocessing tools, ModelBuilder, Scripting and ArcToolbox tools, the proposed model, "Arc-Canal", was created. Arc-Canal is implementable for irrigation networks that open channel network are digitized in ArcGIS. Simulation is for the gravity flow in open channels without any pump in the network. Calculations are based on steady flow. All hydraulic calculations for water level, gates, and weirs are based on the methods defined in "Open-Channel Hydraulics" (Chow 1959). Most of the available flow simulation models are complicated individual software for which user needs to be trained to install and use it. Also most of these software are not free accessible. Arc-Canal is an easy to use tool that anyone with the knowledge of working with ArcGIS can run it. By adding the tool to ArcToolbox and following the described naming method, and entering the required data, model is ready to run. The developed model is a free access tool. Most of the channels in open channel networks in south Texas have mild bottom slope and flow is steady gravity flow. It is desired that the developed model will be a tool to assist irrigation districts in south Texas.

publication date

  • August 2010