Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. Invitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan. Thus, these indole-4-carboxamides act as prodrugs of a tryptophan antimetabolite, 4-aminoindole.
Libardo, M., Duncombe, C. J., Green, S. R., Wyatt, P. G., Thompson, S., Ray, P. C., ... Barry, C. E.
citation count
4
complete list of authors
Libardo, M Daben J||Duncombe, Caroline J||Green, Simon R||Wyatt, Paul G||Thompson, Stephen||Ray, Peter C||Ioerger, Thomas R||Oh, Sangmi||Goodwin, Michael B||Boshoff, Helena IM||Barry, Clifton E