Seasonal Activity, Spatial Distribution, and Physiological Limits of Subterranean Termites (Reticulitermes Species) in an East Texas Forest. Academic Article uri icon


  • One of the major goals of ecology is to understand how co-habiting species partition limited resources. In the eastern U.S., at least three species of Reticulitermes subterranean termites often occur in sympatry; however, little is known about how these species divide food resources. In this study, we characterized the foraging activity of Reticulitermes flavipes (Kollar), R. hageni Banks, and R. virginicus (Banks) across seasons to assess the impact of environmental conditions on resource partitioning. A field site consisting of two grids of wooden monitors was sampled monthly for 28 months. Foraging activity in all three species was correlated with the interaction of temperature and moisture. This correlation was influenced by temperature and moisture approximately equally in R. flavipes, whereas temperature contributed more to the correlation in R. hageni, and moisture contributed more in R. virginicus. These differences caused each species to preferentially forage during specific environmental conditions: R. flavipes continued foraging after high moisture events, R. hageni increased foraging under higher soil moisture, and R. virginicus increased foraging under lower soil temperatures. We attempted to explain these patterns by the species' physiological limits; however, we found no differences in upper lethal limit, desiccation, or submersion limits across species. These results add to the overall understanding of resource partitioning by emphasizing the ability of multiple species to utilize the same resource under different environmental conditions and raise questions regarding the physiological and/or behavioral mechanisms involved.

published proceedings

  • Insects

altmetric score

  • 0.5

author list (cited authors)

  • Janowiecki, M., & Vargo, E. L.

citation count

  • 2

complete list of authors

  • Janowiecki, Mark||Vargo, Edward L

publication date

  • January 2021