Progesterone dose during synchronization treatment alters luteinizing hormone receptor and steroidogenic enzyme mRNA abundances in granulosa cells of Nellore heifers Academic Article uri icon

abstract

  • The objective was to investigate effects of progesterone (P4) dose on abundance of luteinizing hormone receptor (LHCGR), aromatase (CYP19A1), 3β-hydroxysteroid dehydrogenase (HSD3B1), and other steroidogenic mRNA transcripts in granulosa cells from dominant follicles. Nellore heifers were assigned to one of six groups: new, first-use controlled internal drug release device (CIDR1) inserted for 5 days (Large-P4-dose-D5; n = 7) or 6 days (Large-P4-dose-D6; n = 8), prostaglandin (PG)F2α administered on D0 and 1 previously-used CIDR (CIDR3) inserted for 5 days (Small- P4-dose-D5; n = 8) or 6 days (Small-P4-dose-D6; n = 8), CIDR1 inserted on D0 and removed plus PGF2α on D5 (Large-P4-dose-proestrus (PE); n = 7), and CIDR3 and PGF2α on D0 and 1, CIDR3 removed plus PGF2α on D5 (Small-P4-dose-PE; n = 7). Duration of P4 treatment (D5 compared to D6) affected abundances of CYP19A1 mRNA transcripts, with there being greater abundances on D6 than D5 (P ≤ 0.05). Heifers treated with the large dose of P4 had a smaller dominant follicle, less serum and intra-follicular estradiol (E2) concentrations (P ≤ 0.05) and lesser LHCGR, CYP19A1, and HSD3B1 transcript abundances (P ≤ 0.05). Heifers treated to induce PE had a larger follicle diameter (P = 0.09), greater intra-follicular E2 concentrations and larger abundances of CYP19A1 mRNA transcript (P ≤ 0.05) than heifers of the D6 group. Overall, treatment with larger doses of P4 resulted in lesser abundances of LHCGR, HSD3B1, and CYP19A1 mRNA transcripts; thus, potentially leading to development of smaller dominant follicles and lesser E2 concentrations.

author list (cited authors)

  • Dias, H. P., Poole, R. K., Albuquerque, J. P., dos Santos, P. H., Castilho, A., Pohler, K. G., & Vasconcelos, J.

citation count

  • 0

publication date

  • February 2021