Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Inflammatory bowel diseases (IBDs) including colitis are intestinal disorders characterized by chronic inflammation, barrier dysfunction and dysbiosis. Specific forms of vitamin E have been shown to attenuate colitis, but the mechanisms are not fully understood. The objective of this study is to examine the impact of -tocopherol (T) and -tocopherol-rich tocopherols (TmT) on gut inflammation, barrier integrity and microbiota in dextran sulfate sodium (DSS)-induced colitis in mice. We observe that T and TmT mitigated DSS-caused fecal bleeding, diarrhea and elevation of IL-6. These vitamin E forms inhibited colitis-induced loss of the tight junction protein occludin, and attenuated colitis-caused elevation of LPS-binding protein in the plasma, a surrogate marker of intestinal barrier dysfunction, suggesting protection of gut barrier integrity. Consistently, T and T mitigated TNF-/IFN--induced impairment of trans-epithelial electrical resistance in human intestinal epithelial Caco-2cell monolayer. Using 16S rRNA gene sequencing of fecal DNA, we observe that DSS reduced gut microbial evenness and separated microbial composition from healthy controls. In colitis-induced mice, TmT but not T separated gut microbial composition from controls, and attenuated DSS-caused depletion of Roseburia, which contains butyrate producing bacteria and is decreased in IBD patients. Canonical correspondence analysis also supports that TmT favorably altered gut microbial community. In contrast, neither T nor TmT affected gut microbes in healthy animals. These results provide evidence supporting protective effects of T and T on intestinal barrier function and that TmT caused favorable changes of the gut microbiota in colitis-induced mice.