High-Temperature and Drought-Resilience Traits among Interspecific Chromosome Substitution Lines for Genetic Improvement of Upland Cotton. Academic Article uri icon


  • Upland cotton (Gossypium hirsutum L.) growth and development during the pre-and post-flowering stages are susceptible to high temperature and drought. We report the field-based characterization of multiple morpho-physiological and reproductive stress resilience traits in 11 interspecific chromosome substitution (CS) lines isogenic to each other and the inbred G. hirsutum line TM-1. Significant genetic variability was detected (p < 0.001) in multiple traits in CS lines carrying chromosomes and chromosome segments from CS-B (G. barbadense) and CS-T (G. tomentosum). Line CS-T15sh had a positive effect on photosynthesis (13%), stomatal conductance (33%), and transpiration (24%), and a canopy 6.8 C cooler than TM-1. The average pollen germination was approximately 8% greater among the CS-B than CS-T lines. Based on the stress response index, three CS lines are identified as heat- and drought-tolerant (CS-T07, CS-B15sh, and CS-B18). The three lines demonstrated enhanced photosynthesis (14%), stomatal conductance (29%), transpiration (13%), and pollen germination (23.6%) compared to TM-1 under field conditions, i.e., traits that would expectedly enhance performance in stressful environments. The generated phenotypic data and stress-tolerance indices on novel CS lines, along with phenotypic methods, would help in developing new cultivars with improved resilience to the effects of global warming.

published proceedings

  • Plants (Basel)

author list (cited authors)

  • Reddy, K. R., Bheemanahalli, R., Saha, S., Singh, K., Lokhande, S. B., Gajanayake, B., ... Stelly, D. M.

citation count

  • 6

complete list of authors

  • Reddy, Kambham Raja||Bheemanahalli, Raju||Saha, Sukumar||Singh, Kulvir||Lokhande, Suresh B||Gajanayake, Bandara||Read, John J||Jenkins, Johnie N||Raska, Dwaine A||Santiago, Luis M De||Hulse-Kemp, Amanda M||Vaughn, Robert N||Stelly, David M

publication date

  • December 2020


published in