Local, transient tensile stress on the nuclear membrane causes membrane rupture. Academic Article uri icon

abstract

  • Cancer cell migration through narrow constrictions generates compressive stresses on the nucleus that deform it and cause rupture of nuclear membranes. Nuclear membrane rupture allows uncontrolled exchange between nuclear and cytoplasmic contents. Local tensile stresses can also cause nuclear deformations, but whether such deformations are accompanied by nuclear membrane rupture is unknown. Here we used a direct force probe to locally deform the nucleus by applying a transient tensile stress to the nuclear membrane. We found that a transient (∼0.2 s) deformation (∼1% projected area strain) in normal mammary epithelial cells (MCF-10A cells) was sufficient to cause rupture of the nuclear membrane. Nuclear membrane rupture scaled with the magnitude of nuclear deformation and the magnitude of applied tensile stress. Comparison of diffusive fluxes of nuclear probes between wild-type and lamin-depleted MCF-10A cells revealed that lamin A/C, but not lamin B2, protects the nuclear membranes against rupture from tensile stress. Our results suggest that transient nuclear deformations typically caused by local tensile stresses are sufficient to cause nuclear membrane rupture.

published proceedings

  • Mol Biol Cell

altmetric score

  • 1.75

author list (cited authors)

  • Zhang, Q., Tamashunas, A. C., Agrawal, A., Torbati, M., Katiyar, A., Dickinson, R. B., Lammerding, J., & Lele, T. P.

citation count

  • 28

complete list of authors

  • Zhang, Qiao||Tamashunas, Andrew C||Agrawal, Ashutosh||Torbati, Mehdi||Katiyar, Aditya||Dickinson, Richard B||Lammerding, Jan||Lele, Tanmay P

publication date

  • December 2018