The Structural Basis of IRF-3 Activation upon Phosphorylation.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The innate immune system is the first line of defense against bacterial and viral infections. The recognition of pathogen-associated molecular patterns by the RIG-I-like receptors, TLRs, and cGAS leads to the induction of IFN-I by activating the transcription factor IRF-3. Although the mechanism of IRF-3 activation has been extensively studied, the structural basis of IRF-3 activation upon phosphorylation is not fully understood. In this study, we determined the crystal structures of phosphorylated human and mouse IRF-3 bound to CREB-binding protein (CBP), which reveal that phosphorylated IRF-3 forms a dimer via pSer386 (pSer379 in mouse IRF-3) and a downstream pLxIS motif. Size-exclusion chromatography and cell-based studies show that mutations of key residues interacting with pSer386 severely impair IRF-3 activation and IFN- induction. By contrast, phosphorylation of Ser396 within the pLxIS motif of human IRF-3 only plays a moderate role in IRF-3 activation. The mouse IRF-3/CBP complex structure reveals that the mechanism of mouse IRF-3 activation is similar but distinct from human IRF-3. These structural and functional studies reveal the detailed mechanism of IRF-3 activation upon phosphorylation.