Effective Random Forest-Based Fault Detection and Diagnosis for Wind Energy Conversion Systems
Academic Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- Other
-
- View All
-
Overview
published proceedings
author list (cited authors)
-
Fezai, R., Dhibi, K., Mansouri, M., Trabelsi, M., Hajji, M., Bouzrara, K., Nounou, H., & Nounou, M.
citation count
complete list of authors
-
Fezai, Radhia||Dhibi, Khaled||Mansouri, Majdi||Trabelsi, Mohamed||Hajji, Mansour||Bouzrara, Kais||Nounou, Hazem||Nounou, Mohamed
publication date
publisher
Research
keywords
-
Computational Modeling
-
Fault Detection
-
Fault Detection And Diagnosis
-
Feature Extraction
-
Hierarchical K-means (h-kmeans)
-
Kernel
-
Kernel Principal Component Analysis (kpca)
-
Principal Component Analysis
-
Radio Frequency
-
Random Forest (rf)
-
Reduced Kpca
-
Vegetation
-
Wind Energy Conversion Systems
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue
Other
URL
-
http://dx.doi.org/10.1109/jsen.2020.3037237
user-defined tag
-
7 Affordable and Clean Energy