Magnetic Hyperthermia Study of Mn-Zn-Fe and Zn-Gd-Fe Nanoparticle Systems as Possible Low-Tc Agents for Magnetic Particle Hyperthermia Academic Article uri icon

abstract

  • AbstractMagnetic nanoparticles have found utility in many biological applications, including imaging, cancer therapy, drug delivery, sensing and hyperthermia for tumor therapy. Hyperthermia is raising the tissue temperature between 41.5 - 46 degrees Celsius to kill cancerous cells while preserving the normal cells. Due to the fact that many robust synthetic strategies exist for iron oxides which results in high quality, monodisperse and crystalline nanoparticles, hyperthermia applications have traditionally used magnetic oxide nanoparticles. On the other hand, new materials for hyperthermia that combine the advantages of stability with those of magnetic behavior are desirable. We report the synthesis of MnZnFe, CoGdZn and ZnGdFe nanoparticle systems which are ideal for biological applications over magnetic oxides due to their conjugation chemistry, and surface chemistry. We present an AC magnetic heating studies of these nanoparticle systems which exhibit magnetic field heating. The frequency dependence of the heating follows general trends predicted by power loss equations and is similar to traditional materials. The heating pattern of Zn-Gd-Fe (20mg/ml) using alcohol thermometer at 961 kHz and 433 KHz and the heating pattern of Mn-Zn-Fe [Zn = 0.5 conc.](20mg/ml) using alcohol thermometer at 961 kHz and finally the heating pattern of Co-Gd Zn [Zn = 0.2 conc. Gd (1-X)] (20mg/ml) using alcohol thermometer at 961 kHz are reported. X Ray Diffraction studies and SQUID magnetic measurements and TEM and EDX particle size and constituents measurements are also included for the nanoparticle systems. In conclusion, high quality heating nanoparticle composites were developed for hyperthermia treatment of cancer. The composites generate sufficient heat at room temperature and stops heating at the Curie temperature Tc of the respective nanoparticle system.

author list (cited authors)

  • Hayek, S. S., Chen, C., Flores, G., Batich, C. D., & Haik, Y. S.

publication date

  • January 1, 2007 11:11 AM