Topological nodal line in ZrTe2 demonstrated by nuclear magnetic resonance Academic Article uri icon

abstract

  • In this work, we report nuclear magnetic resonance (NMR) combined with density functional theory studies of the transition metal dichalcogenide ZrTe2. The measured NMR shift anisotropy reveals a quasi-two-dimensional behavior connected to a topological nodal line close to the Fermi level. With the magnetic field perpendicular to the ZrTe2 layers, the measured shift can be well-fitted by a combination of enhanced diamagnetism and spin shift due to high-mobility Dirac electrons. The spin-lattice relaxation rates with external field both parallel and perpendicular to the layers at low temperatures match the expected behavior associated with extended orbital hyperfine interaction due to quasi-two-dimensional Dirac carriers. In addition, calculated band structures also show clear evidence for the existence of a nodal line in ZrTe2 between ? and A. For intermediate temperatures, there is a sharp reduction in spin-lattice relaxation rate that can be explained as due to a reduced lifetime for these carriers, which matches the reported large change in mobility in the same temperature range. Above 200 K, the local orbital contribution starts to dominate in an orbital relaxation mechanism revealing the mixture of atomic functions.

published proceedings

  • Physical Review B

author list (cited authors)

  • Tian, Y., Ghassemi, N., & Ross, J. H

publication date

  • January 1, 2020 11:11 AM