On Delay-Independent Diagonal Stability of Max-Min Congestion Control Academic Article uri icon


  • Network feedback in a congestion-control system is subject to delay, which can significantly affect stability and performance of the entire system. While most existing stability conditions explicitly depend on delay Di of individual flow i, a recent study shows that the combination of a symmetric Jacobian A and condition (A) < 1 guarantees local stability of the system regardless of Di. However, the requirement of symmetry is very conservative and no further results have been obtained beyond this point. In this technical note, we proceed in this direction and gain a better understanding of conditions under which congestion-control systems can achieve delay-independent stability. Towards this end, we first prove that if Jacobian matrix A satisfies A < 1 for any monotonic induced matrix norm , the system is locally stable under arbitrary diagonal delay Di. We then derive a more generic result and prove that delay-independent stability is guaranteed as long as A is Schur diagonally stable, which is also observed to be a necessary condition in simulations. Utilizing these results, we identify several classes of well-known matrices that are stable under diagonal delays if (A) < 1 and prove stability of MKC with arbitrary parameters i and i. 2009 IEEE.

published proceedings

  • IEEE Transactions on Automatic Control

author list (cited authors)

  • Yueping Zhang, .., & Loguinov, D.

citation count

  • 5

complete list of authors

  • Loguinov, D

publication date

  • May 2009