Correlation of light microscopic findings with transmission electron microscopy within a vascular occlusion device.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Host response to an implanted biomaterial is a complex process involving microscopic changes in extracellular matrix (ECM) composition. Reliable pathology analysis is imperative for accurate assessment of the tissue response to an implanted device. Plastic histology is commonly used for histology evaluation of medical devices to assess the device-tissue interface; however, this technique is prone to variable staining that can confound histology interpretation. Appropriately, we propose using transmission electron microscopy (TEM) to confirm histologic ECM findings in order to provide sufficient host-response data. Tissue response to an absorbable shape memory polymer intravascular occlusion device with a nitinol wire backbone was evaluated. Representative plastic-embedded, micro-ground sections from 30-day, 60-day, and 90-day timepoints were analyzed. ECM regions were selected, and ultrathin sections were created for TEM evaluation. Histological changes in ECM composition were compared for light microscopy (LM) and TEM findings; specifically, TEM fibrillary patterns for collagen and fibrin were used to confirm LM results. Throughout this study, LM reveals inconsistent staining in plastic-embedded sections. TEM, on the other hand, provides clear insight into the tissue response by morphologically discerning distinct fibrillary patterns within ECM structures; loose to dense collagen surrounds the implant as fibrin degrades, demonstrating progression of postimplant ECM maturation. Moreover, TEM serves as a definitive method for confirming tissue substrate morphology when LM findings prove ambiguous.