Effects of excess metabolizable protein on ovarian function and circulating amino acids of beef cows: 1. Excessive supply from corn gluten meal or soybean meal. Academic Article uri icon


  • In the dairy industry, excess dietary CP is consistently correlated with decreased conception rates. However, the source from which excess CP is derived and how it affects reproductive function in beef cattle is largely undefined. The objective of this experiment was to determine the effects of feeding excess metabolizable protein (MP) from feedstuffs differing in rumen degradability on ovulatory follicular dynamics, subsequent corpus luteum (CL) development, steroid hormone production and circulating amino acids (AA) in beef cows. Non-pregnant, non-lactating mature beef cows (n=18) were assigned to 1 of 2 isonitrogenous diets (150% of MP requirements) designed to maintain similar BW and body condition score (BCS) between treatments. Diets consisted of ad libitum corn stalks supplemented with corn gluten meal (moderate rumen undegradable protein (RUP); CGM) or soybean meal (low RUP; SBM). After a 20-day supplement adaptation period, cows were synchronized for ovulation. After 10 days of synchronization, gonadotropin releasing hormone (GnRH) was administered to reset ovarian follicular growth. Starting at GnRH administration and daily thereafter until spontaneous ovulation, transrectal ultrasonography was used to diagram ovarian follicular growth, and blood samples were collected for hormone, metabolite and AA analyses. After 7 days of visual detection of estrus, CL size was determined via ultrasound. Data were analyzed using the MIXED procedures of SAS. As designed, cow BW and BCS were not different (P0.33). Ovulatory follicular wavelength, antral follicle count, ovulatory follicle size at dominance and duration of dominance were not different (P>0.13) between treatments. Cows supplemented with CGM had greater post-dominance ovulatory follicle growth, larger dominant follicles at spontaneous luteolysis, shorter proestrus, and larger ovulatory follicles (P0.03) than SBM cows. No differences (P0.44) in peak estradiol, ratio of estradiol to ovulatory follicle volume, or plasma urea nitrogen were observed. While CL volume and the ratio of progesterone to CL volume were not affected by treatment (P0.24), CGM treated cows tended to have decreased (P=0.07) circulating progesterone 7 days post-estrus compared with SBM cows. Although total circulating plasma AA concentration did not differ (P=0.70) between treatments, CGM cows had greater phenylalanine (P=0.03) and tended to have greater leucine concentrations (P=0.07) than SBM cows. In summary, these data illustrate that excess MP when supplemented to cows consuming a low quality forage may differentially impact ovarian function depending on ruminal degradability of the protein source.

published proceedings

  • Animal

author list (cited authors)

  • Geppert, T. C., Meyer, A. M., Perry, G. A., & Gunn, P. J.

citation count

  • 2

complete list of authors

  • Geppert, TC||Meyer, AM||Perry, GA||Gunn, PJ

publication date

  • January 2017

published in