Stability of delayed inertial neural networks on time scales: A unified matrix-measure approach.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
This note introduces a unified matrix-measure concept to study the stability of a class of inertial neural networks with bounded time delays on time scales. The novel matrix-measure concept unifies the classic matrix-measure and the generalized matrix-measure concept. One sufficient global exponential stability criterion is obtained based on this key matrix-measure and no Lyapunov function is required. To make the stability performance better, another stability criterion in which more detailed information is involved has been acquired. The theoretical results in this note contain and extend some existing continuous-time and discrete-time works. A numerical example is given to show the validity of the results.