Preserving Spin States upon Reflection: Linear and Nonlinear Responses of a Chiral Meta-Mirror. Academic Article uri icon

abstract

  • Conventional metallic mirrors flip the spin of a circularly polarized wave upon normal incidence by inverting the direction of the propagation vector. Altering or maintaining the spin state of light waves carrying data is a critical need to be met at the brink of photonic information processing. In this work, we report a chiral metamaterial mirror that strongly absorbs a circularly polarized wave of one spin state and reflects that of the opposite spin in a manner conserving the circular polarization. A circular dichroic response in reflection as large as 0.5 is experimentally observed in a near-infrared wavelength band. By imaging a fabricated pattern composed of the enantiomeric unit cells, we directly visualize the two key features of our engineered meta-mirrors, namely the chiral-selective absorption and the polarization preservation upon reflection. Beyond the linear regime, the chiral resonances enhance light-matter interaction under circularly polarized excitation, greatly boosting the ability of the metamaterial to perform chiral-selective signal generation and optical imaging in the nonlinear regime. Chiral meta-mirrors, exhibiting giant chiroptical responses and spin-selective near-field enhancement, hold great promise for applications in polarization sensitive electro-optical information processing and biosensing.

published proceedings

  • Nano Lett

altmetric score

  • 23.63

author list (cited authors)

  • Kang, L., Rodrigues, S. P., Taghinejad, M., Lan, S., Lee, K., Liu, Y., ... Cai, W.

citation count

  • 85

complete list of authors

  • Kang, Lei||Rodrigues, Sean P||Taghinejad, Mohammad||Lan, Shoufeng||Lee, Kyu-Tae||Liu, Yongmin||Werner, Douglas H||Urbas, Augustine||Cai, Wenshan

publication date

  • November 2017