The Effect of the Balcones Escarpment on Three Cases of Extreme Precipitation in Central Texas Academic Article uri icon

abstract

  • Abstract The proximity to the Gulf of Mexico and local topography makes central Texas particularly prone to heavy precipitation and deadly flood events. Specifically, the Balcones Escarpment, located in central Texas, creates extremely favorable hydrologic characteristics for damaging floods. Urban centers such as San Antonio and Austin, Texas, are located along this terrain feature and have suffered at times, even with mitigation strategies, catastrophic flood damage. While the hydrologic effects of the Balcones Escarpment are well known, the meteorological impacts are uncertain. The purpose of this study is to evaluate the effect of the Balcones Escarpment in three cases of extreme precipitation in which the rainfall was maximized near the escarpment. Numerical simulations for each event were run at convection-allowing grid spacing using the Weather Research and Forecasting (WRF) Model and were used as control runs. Then, the Balcones Escarpment was removed by moving the associated terrain gradient to the north and west. The removal of the Balcones Escarpment did not change the overall characteristics of any of the three rainfall events, with the spatial pattern and magnitude of precipitation similar between the control and terrain-modified simulations. However, the location of the maximum precipitation was slightly, but consistently, shifted to the north and west. These results show that the overall atmospheric conditions are much more important for determining the intensity and occurrence of extreme rainfall in central Texas than the local topography, but the Balcones Escarpment can cause subtle hydrologically important changes in the location of the maximum accumulation.

published proceedings

  • MONTHLY WEATHER REVIEW

altmetric score

  • 9.5

author list (cited authors)

  • Nielsen, E. R., Schumacher, R. S., & Keclik, A. M.

citation count

  • 17

complete list of authors

  • Nielsen, Erik R||Schumacher, Russ S||Keclik, Alexandra M

publication date

  • January 2016