Dynamical Insights into Extreme Short-Term Precipitation Associated with Supercells and Mesovortices Academic Article uri icon

abstract

  • Abstract In some prominent extreme precipitation and flash flood events, radar and rain gauge observations have suggested that the heaviest short-term rainfall accumulations (up to 177 mm h1) were associated with supercells or mesovortices embedded within larger convective systems. In this research, we aim to identify the influence that rotation has on the storm-scale processes associated with heavy precipitation. Numerical model simulations conducted herein were inspired by a rainfall event that occurred in central Texas in October 2015 where the most extreme rainfall accumulations were collocated with meso--scale vortices. Five total simulations were performed to test the sensitivity of precipitation processes to rotation. A control simulation, based on a wind profile from the aforementioned event, was compared with two experiments with successively weaker low-level shear. With greater environmental low-level shear, more precipitation fell, in both a point-maximum and an area-averaged sense. Intense, rotationally induced low-level vertical accelerations associated with the dynamic nonlinear perturbation vertical pressure gradient force were found to enhance the low- to midlevel updraft strength and total vertical mass flux and allowed access to otherwise inhibited sources of moisture and CAPE in the higher-shear simulations. The dynamical accelerations, which increased with the intensity of the low-level shear, dominated over buoyant accelerations in the low levels and were responsible for inducing more intense low-level updrafts that were sustained despite a stable boundary layer.

published proceedings

  • JOURNAL OF THE ATMOSPHERIC SCIENCES

altmetric score

  • 5.05

author list (cited authors)

  • Nielsen, E. R., & Schumacher, R. S.

citation count

  • 33

complete list of authors

  • Nielsen, Erik R||Schumacher, Russ S

publication date

  • September 2018