Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton Academic Article uri icon

abstract

  • The substantial increase in plastic pollution in marine ecosystems raises concerns about its adverse impacts on the microbial community. Microorganisms (bacteria, phytoplankton) are important producers of exopolymeric substances (EPS), which govern the processes of marine organic aggregate formation, microbial colonization, and pollutant mobility. Until now, the effects of nano- and micro-plastics on characteristics of EPS composition have received little attention. This study investigated EPS secretion by four phytoplankton species following exposure to various concentrations of polystyrene nano- and microplastics (55 nm nanoparticles; 1 and 6 μm microparticles). The 55 nm nanoparticles induced less growth/survival (determined on a DNA basis) and produced EPS with higher protein-to-carbohydrate (P/C) ratios than the exposure to microplastic particles. The amount of DNA from the four marine phytoplankton showed a higher negative linear correlation with increasing P/C ratios, especially in response to nanoplastic exposure. These results provide evidence that marine phytoplankton are quite sensitive to smaller-sized plastics and actively modify their EPS chemical composition to cope with the stress from pollution. Furthermore, the release of protein-rich EPS was found to facilitate aggregate formation and surface modification of plastic particles, thereby affecting their fate and colonization. Overall, this work offers new insights into the potential harm of different-sized plastic particles and a better understanding of the responding mechanism of marine phytoplankton for plastic pollution. The data also provide needed information about the fate of marine plastics and biogenic aggregation and scavenging processes.

altmetric score

  • 0.75

author list (cited authors)

  • Shiu, R., Vazquez, C. I., Chiang, C., Chiu, M., Chen, C., Ni, C., ... Chin, W.

citation count

  • 4

publication date

  • August 2020