The effects of the forage-to-concentrate ratio on the conversion of digestible energy to metabolizable energy in growing beef steers. Academic Article uri icon

abstract

  • Metabolizable energy (ME) is calculated from digestible energy (DE) using a constant conversion factor of 0.82. Methane and urine energy losses vary across diets and dry matter intake (DMI), suggesting that a static conversion factor fails to describe the biology. To quantify the effects of the forage-to-concentrate ratio (F:C) on the efficiency of conversion of DE to ME, 10 Angus steers were used in a 5 5 replicated Latin square. Dry-rolled corn was included in experimental diets at 0%, 22.5%, 45.0%, 67.5%, and 83.8% on a dry matter (DM) basis, resulting in a high F:C (HF:C), intermediate F:C (IF:C), equal F:C (EF:C), low F:C (LF:C), and a very low F:C (VLF:C), respectively. Each experimental period consisted of a 23-d diet adaption followed by 5 d of total fecal and urine collections and a 24-h gas exchange collection. Contrasts were used to test the linear and quadratic effects of the F:C. There was a tendency (P = 0.06) for DMI to increase linearly as F:C decreased. As a result, gross energy intake (GEI) increased linearly (P = 0.04) as F:C decreased. Fecal energy loss expressed as Mcal/d (P = 0.02) or as a proportion of GEI (P < 0.01) decreased as F:C decreased, such that DE (Mcal/d and Mcal/kg) increased linearly (P < 0.01) as F:C decreased. As a proportion of GEI, urine energy decreased linearly (P = 0.03) as F:C decreased. Methane energy loss as a proportion of GEI responded quadratically (P < 0.01), increasing from HF:C to IF:C then decreasing thereafter. The efficiency of DE to ME conversion increased quadratically (P < 0.01) as F:C decreased, ranging from 0.86 to 0.92. Heat production (Mcal) increased linearly (P < 0.04) as F:C decreased but was not different as a proportion of GEI (P 0.22). As a proportion of GEI, retained energy responded quadratically (P = 0.03), decreasing from HF:C to IF:C and increasing thereafter. DM, organic matter, and neutral detergent fiber digestibility increased linearly (P < 0.01) and starch digestibility decreased linearly (P < 0.01) as the F:C decreased. Total N retained tended to increase linearly as the proportion of concentrate increased in the diet (P = 0.09). In conclusion, the efficiency of conversion of DE to ME increased with decreasing F:C due to decreasing methane and urine energy loss. The relationship between DE and ME is not static, especially when differing F:C.

published proceedings

  • J Anim Sci

altmetric score

  • 1

author list (cited authors)

  • Fuller, A. L., Wickersham, T. A., Sawyer, J. E., Freetly, H. C., Brown-Brandl, T. M., & Hales, K. E.

citation count

  • 7

complete list of authors

  • Fuller, Amanda L||Wickersham, Tryon A||Sawyer, Jason E||Freetly, Harvey C||Brown-Brandl, Tami M||Hales, Kristin E

publication date

  • January 2020