Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria Academic Article uri icon

abstract

  • The current epidemic of infections caused by antibiotic-resistant gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics.

altmetric score

  • 5.5

author list (cited authors)

  • Richter, S. G., Elli, D., Kim, H. K., Hendrickx, A., Sorg, J. A., Schneewind, O., & Missiakas, D.

citation count

  • 57

publication date

  • February 2013