THEORETICAL AND EXPERIMENTAL CHARACTERIZATION OF COPLANAR WAVE-GUIDE DISCONTINUITIES FOR FILTER APPLICATIONS
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
A full-wave analysis of shielded coplanar waveguide (CPW) two-port discontinuities based on the solution of an appropriate surface integral equation in the space domain is presented. Frequency-dependent scattering parameters for open-end and short-end CPW stubs are computed using this method. The numerically derived results are compared with measurements performed in the frequency range 5-25 GHz and show very good agreement. From the scattering parameters, lumped-element equivalent circuits have been derived to model the discontinuities. The inductors and capacitors of these models have been represented by closed-form equations, as functions of the stub length, to compute the circuit element values for these discontinuities.<>