Friction and wear of diamond and diamond-like carbon films Academic Article uri icon

abstract

  • Detailed tribological studies on diamond and diamond-like carbon (DLC) films have confirmed that these films are inherently self-lubricating and resistant to abrasive, adhesive and corrosive wear. Because of their high chemical inertness, they are also resistant to corrosion and oxidation (even at elevated temperatures). The combination of such exceptional qualities in these films makes them ideal for a wide range of demanding tribological applications (such as microelectromechanical systems, cutting tools, mechanical seals, magnetic hard disks, etc.). These films, available for more than three decades, have been used extensively for tooling and magnetic hard disk applications. Their potential in other application areas is currently being explored around the world. With the development of new and more robust deposition methods in recent years, it is envisioned that the production of high quality diamond and DLC films will become very cost effective and highly reliable for large-scale applications in the transportation and manufacturing sectors. In this paper, sliding wear mechanisms of diamond and DLC films will be presented. Specifically, it will be shown that, in general, the wear of these films is extremely low (mainly because of their exceptional hardness and low friction characteristics). Specific test conditions established during each sliding test, however, may dramatically affect the wear performance of certain diamond and DLC films. One of the dominant wear mechanisms relates to a phase transformation that is primarily the result of very high mechanical and thermal loadings of sliding contact interfaces. The transformation products (such as disordered graphite) trapped at the sliding interface may transfer to the mating surface and significantly affect friction and wear. This paper describes, in terms of structural and fundamental tribological knowledge, the ideal film microstructures and chemistry, as well as operational conditions under which diamond and DLC films perform the best and provide superlow friction and wear properties in sliding tribological applications.

published proceedings

  • PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY

author list (cited authors)

  • Erdemir, A.

citation count

  • 49

complete list of authors

  • Erdemir, A

publication date

  • January 2002