Simple and fast annealing synthesis of titanium dioxide nanostructures and morphology transformation during annealing processes. Academic Article uri icon

abstract

  • Wire- and belt-like single-crystalline titanium dioxide nanostructures were synthesized by using a simple thermal annealing method, which has often been avoided for the synthesis of metal oxide nanostructures from high melting point metals such as Ti. The synthesis method requires neither high reaction temperature nor complicated reaction processes, and can be used for producing dense nanomaterials with relatively short reaction time at temperatures much lower than the melting point of titanium and titanium dioxide. Key synthesis factors including the choice of eutectic catalyst, growth temperature, and annealing time were systematically investigated. The synthesis reaction was promoted by a copper eutectic catalyst, producing long nanostructures with short reaction times. For example, it was observed that only 30 min of annealing time at 850 degrees C was enough to produce densely grown approximately 10 microm long nanowires with diameters of approximately 100 nm, and longer reaction time brought about morphology changes from wires to belts as well as producing longer nanostructures up to approximately 30 microm. The nanostructures have the crystalline rutile structure along the [Formula: see text] growth direction. Finally, our simple and effective method for the synthesis of TiO2 nanostructures could be utilized for growing other metal oxide nanowires from high melting temperature metals.

published proceedings

  • Nanotechnology

altmetric score

  • 3

author list (cited authors)

  • Park, J., Ryu, Y., Kim, H., & Yu, C.

citation count

  • 24

complete list of authors

  • Park, Jongbok||Ryu, Yeontack||Kim, Hansoo||Yu, Choongho

publication date

  • March 2009