An Atomic View of Cation Diffusion Pathways from Single-Crystal Topochemical Transformations. Academic Article uri icon


  • The diffusion pathways of Li-ions as they traverse cathode structures in the course of insertion reactions underpin many questions fundamental to the functionality of Li-ion batteries. Much current knowledge derives from computational models or the imaging of lithiation behavior at larger length scales; however, it remains difficult to experimentally image Li-ion diffusion at the atomistic level. Here, by using topochemical Li-ion insertion and extraction to induce single-crystal-to-single-crystal transformations in a tunnel-structured V2 O5 polymorph, coupled with operando powder X-ray diffraction, we leverage single-crystal X-ray diffraction to identify the sequence of lattice interstitial sites preferred by Li-ions to high depths of discharge, and use electron density maps to create a snapshot of ion diffusion in a metastable phase. Our methods enable the atomistic imaging of Li-ions in this cathode material in kinetic states and provide an experimentally validated angstrom-level 3D picture of atomic pathways thus far only conjectured through DFT calculations.

published proceedings

  • Angew Chem Int Ed Engl

altmetric score

  • 5.3

author list (cited authors)

  • Handy, J. V., Luo, Y., Andrews, J. L., Bhuvanesh, N., & Banerjee, S.

citation count

  • 13

complete list of authors

  • Handy, Joseph V||Luo, Yuting||Andrews, Justin L||Bhuvanesh, Nattamai||Banerjee, Sarbajit

publication date

  • September 2020