Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Nitric oxide (NO) is a potent inhibitor of apoptosis in many cell types, including hepatocytes. We and others have described NO-dependent decreases in caspase activity in cells undergoing apoptosis. However, previous work has not determined whether NO disrupts the proteolytic processing and thus the activation of pro-caspases. Here we report that NO suppresses proteolytic processing and activation of multiple pro-caspases in intact cells, including caspase-3 and caspase-8. We found that both exogenous NO as well as endogenously produced NO via adenoviral inducible NO synthase gene transfer protected hepatocytes from tumor necrosid factor (TNF) alpha plus actinomycin D (TNFalpha/ActD)-induced apoptosis. Affinity labeling with biotin-VAD-fmk of all active caspase species in TNFalpha-mediated apoptosis identified four newly labeled spots (activated caspases) present exclusively in TNFalpha/ActD-treated cells. Both NO and the caspase inhibitor, Ac-DEVD-CHO, prevented the appearance of the four newly labeled spots or active caspases. Immunoanalysis of affinity labeled caspases demonstrated that caspase-3 was the major effector caspase. Western blot analysis also identified the activation of caspase-8 in the TNFalpha/ActD-treated cells, and the activation was suppressed by NO. Furthermore, NO inhibited several other events associated with caspase activation in cells, including release of cytochrome c from mitochondria, decrease in mitochondrial transmembrane potential, and cleavage of poly(ADP-ribose) polymerase in TNFalpha/ActD-treated cells. These findings indicate the involvement of multiple caspases in TNFalpha-mediated apoptosis in hepatocytes and establish the capacity of NO to inhibit not only active caspases but also caspase activation.