Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example Academic Article uri icon

abstract

  • National Aeronautics and Space Administrations (NASAs) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earths surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mission is primarily aimed at capturing ice measurements, ICESat-2 also provides data over vegetated areas, offering the capability to gain insights into ecosystem structure and the potential to contribute to the sustainable management of forests. This study involved an examination of the utility of ICESat-2 for estimating forest aboveground biomass (AGB). The objectives of this study were to: (1) investigate the use of canopy metrics for estimating AGB, using data extracted from an ICESat-2 transect over forests in south-east Texas; (2) compare the accuracy for estimating AGB using data from the strong beam and weak beam; and (3) upscale predicted AGB estimates using variables from Landsat multispectral imagery and land cover and canopy cover maps, to generate a 30 m spatial resolution AGB map. Methods previously developed with simulated ICESat-2 data over Sam Houston National Forest (SHNF) in southeast Texas were adapted using actual data from an adjacent ICESat-2 transect over similar vegetation conditions. Custom noise filtering and photon classification algorithms were applied to ICESat-2s geolocated photon data (ATL03) for one beam pair, consisting of a strong and weak beam, and canopy height estimates were retrieved. Canopy height parameters were extracted from 100 m segments in the along-track direction for estimating AGB, using regression analysis. ICESat-2-derived AGB estimates were then extrapolated to develop a 30 m AGB map for the study area, using vegetation indices from Landsat 8 Operational Land Imager (OLI), National Land Cover Database (NLCD) landcover and canopy cover, with random forests (RF). The AGB estimation models used few canopy parameters and suggest the possibility for applying well-developed methods for modeling AGB with airborne light detection and ranging (lidar) data, using processed ICESat-2 data. The final regression model achieved a R2 and root mean square error (RMSE) value of 0.62 and 24.63 Mg/ha for estimating AGB and RF model evaluation with a separate test set yielded a R2 of 0.58 and RMSE of 23.89 Mg/ha. Findings provide an initial look at the ability of ICESat-2 to estimate AGB and serve as a basis for further upscaling efforts.

published proceedings

  • REMOTE SENSING

altmetric score

  • 1.1

author list (cited authors)

  • Narine, L. L., Popescu, S. C., & Malambo, L.

citation count

  • 35

complete list of authors

  • Narine, Lana L||Popescu, Sorin C||Malambo, Lonesome

publication date

  • June 2020

publisher