Redirecting Pore Assembly of Staphylococcal α-Hemolysin by Protein Engineering. Academic Article uri icon

abstract

  • α-Hemolysin (αHL), a β-barrel pore-forming toxin (βPFT), is secreted as a water-soluble monomer by Staphylococcus aureus. Upon binding to receptors on target cell membranes, αHL assembles to form heptameric membrane-spanning pores. We have previously engineered αHL to create a protease-activatable toxin that is activated by site-specific proteolysis including by tumor proteases. In this study, we redesigned αHL so that it requires 2-fold activation on target cells through (i) binding to specific receptors, and (ii) extracellular proteolytic cleavage. To assess our strategy, we constructed a fusion protein of αHL with galectin-1 (αHLG1, αHL-Galectin-1 chimera). αHLG1 was cytolytic toward cells that lack a receptor for wild-type αHL. We then constructed protease-activatable mutants of αHLG1 (PAMαHLG1s). PAMαHLG1s were activated by matrix metalloproteinase 2 (MMP-2) and had approximately 50-fold higher cytolytic activity toward MMP-2 overexpressing cells (HT-1080 cells) than toward non-overexpressing cells (HL-60 cells). Our approach provides a novel strategy for tailoring pore-forming toxins for therapeutic applications.

published proceedings

  • ACS Cent Sci

altmetric score

  • 1.5

author list (cited authors)

  • Koo, S., Cheley, S., & Bayley, H

citation count

  • 6

complete list of authors

  • Koo, Sunwoo||Cheley, Stephen||Bayley, Hagan

publication date

  • March 2019