Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO2 Reduction. Academic Article uri icon

abstract

  • Atomically dispersed metal and nitrogen co-doped carbon (M-N/C) catalysts hold great promise for electrochemical CO2 conversion. However, there is a lack of cost-effective synthesis approaches to meet the goal of economic mass production of single-atom M-N/C with desirable carbon support architecture for efficient CO2 reduction. Herein, we report facile transformation of commercial carbon nanotube (CNT) into isolated Fe-N4 sites anchored on carbon nanotube and graphene nanoribbon (GNR) networks (Fe-N/CNT@GNR). The oxidization-induced partial unzipping of CNT results in the generation of GNR nanolayers attached to the remaining fibrous CNT frameworks, which reticulates a hierarchically mesoporous complex and thus enables a high electrochemical active surface area and smooth mass transport. The Fe residues originating from CNT growth seeds serve as Fe sources to form isolated Fe-N4 moieties located at the CNT and GNR basal plane and edges with high intrinsic capability of activating CO2 and suppressing hydrogen evolution. The Fe-N/CNT@GNR delivers a stable CO Faradaic efficiency of 96% with a partial current density of 22.6 mA cm-2 at a low overpotential of 650 mV, making it one of the most active M-N/C catalysts reported. This work presents an effective strategy to fabricate advanced atomistic catalysts and highlights the key roles of support architecture in single-atom electrocatalysis.

published proceedings

  • ACS Nano

altmetric score

  • 1.25

author list (cited authors)

  • Pan, F., Li, B., Sarnello, E., Fei, Y., Gang, Y., Xiang, X., ... Li, Y.

citation count

  • 57

complete list of authors

  • Pan, Fuping||Li, Boyang||Sarnello, Erik||Fei, Yuhuan||Gang, Yang||Xiang, Xianmei||Du, Zichen||Zhang, Peng||Wang, Guofeng||Nguyen, Hoai T||Li, Tao||Hu, Yun Hang||Zhou, Hong-Cai||Li, Ying

publication date

  • May 2020