Deep Reinforcement Learning for Electric Transmission Voltage Control
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Today, human operators primarily perform voltage control of the electric transmission system. As the complexity of the grid increases, so does its operation, suggesting additional automation could be beneficial. A subset of machine learning known as deep reinforcement learning (DRL) has recently shown promise in performing tasks typically performed by humans. This paper applies DRL to the transmission voltage control problem, presents open-source DRL environments for voltage control, proposes a novel modification to the "deep Q network" (DQN) algorithm, and performs experiments at scale with systems up to 500 buses. The promise of applying DRL to voltage control is demonstrated, though more research is needed to enable DRL-based techniques to consistently outperform conventional methods.