Aromatic vs aliphatic C-H cleavage of alkyl-substituted pyridines by (PNPiPr)Re compounds. Academic Article uri icon

abstract

  • Both (PNP)Re(H)(4) and (PNP)ReH(cyclooctyne) (PNP(i)(Pr) = ((i)Pr(2)PCH(2)SiMe(2))(2)N) react with alkylpyridines NC(5)H(4)R to give first (PNP)ReH(2)(eta(2)-pyridyl) and cyclooctene and then, when not sterically blocked, (PNP)Re(eta(2)-pyridyl)(2) and cyclooctane. The latter are shown by NMR, X-ray diffraction, and DFT calculations to have several energetically competitive isomeric structures and pyridyl N donation in preference to PNP amide pi-donation. DFT studies support NMR solution evidence that the most stable bis pyridyl structure is one that is doubly eta(2)- with the pyridyl N donating to the metal center. When both ortho positions carry methyl substituents, cyclooctane and the carbyne complex (PNP)ReH(tbd1;C-pyridyl) are produced. Excess 2-vinyl pyridine reacts with (PNP)Re(H)(4) preferentially at the vinyl group, to give 2-ethyl pyridine and the sigma-vinyl complex (PNP)ReH[eta(2)-CH=CH(2-py)]. The DFT and X-ray structures show, by various comparisons, the ability of the PNP amide nitrogen to pi-donate to an otherwise unsaturated d(4) Re(III) center, showing short Re-N distances consistent with the presence of pi-donation.

author list (cited authors)

  • Ozerov, O. V., Pink, M., Watson, L. A., & Caulton, K. G

complete list of authors

  • Ozerov, Oleg V||Pink, Maren||Watson, Lori A||Caulton, Kenneth G

publication date

  • January 1, 2004 11:11 AM