abstract
-
We give a proof of the Khintchine inequalities in non-commutative $L_p$-spaces for all $0< p<1$. These new inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, e.g. for the analogues of such random variables in free probability. We also prove a factorization for operators from a Hilbert space to a non commutative $L_p$-space, which is new for $0