Longitudinal functional principal component modeling via Stochastic Approximation Monte Carlo. Conference Paper uri icon


  • The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.

published proceedings

  • Can J Stat

author list (cited authors)

  • Martinez, J. G., Liang, F., Zhou, L., & Carroll, R. J.

citation count

  • 4

complete list of authors

  • Martinez, Josue G||Liang, Faming||Zhou, Lan||Carroll, Raymond J

publication date

  • June 2010