Morphological and Physiological Responses of Cornus alba to Salt and Drought Stresses under Greenhouse Conditions Academic Article uri icon

abstract

  • Tatarian dogwood (Cornus alba) is an ornamental shrub with white fruits, creamy-white flowers, and red stems in fall through late winter and is widely used in residential landscape, public parks, and botanical gardens. Two greenhouse experiments were conducted to characterize the survival, morphological, aesthetic, and physiological responses of tatarian dogwood seedlings to salinity and drought stresses. In Expt. 1, tatarian dogwood seedlings grown in three soilless growing substrates (Metro-Mix 360, 560, and 902) were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dSm1 (control) or saline solution (by adding calculated amount of sodium chloride and calcium chloride) at an EC of 5.0 or 10.0 dSm1 once per week for 8 weeks. Results showed that substrate did not influence the growth of tatarian dogwood seedling. All plants irrigated with saline solutions at an EC of 10.0 dSm1 died, whereas those irrigated with saline solutions at an EC of 5.0 dSm1 exhibited severe foliar salt damage with an average visual score of 1.0 (on a scale of 0 to 5, with 0 = dead and 5 = excellent without foliar salt damage). Compared with the control, saline solutions at an EC of 5.0 dSm1 reduced plant height and shoot dry weight (DW) by 50.8% and 55.2%, respectively. Relative chlorophyll content [soil plant analysis development (SPAD) reading], chlorophyll fluorescence (Fv/Fm), and net photosynthesis rate (Pn) also decreased when plants were irrigated with saline solutions at an EC of 5.0 and 10.0 dSm1. Leaf sodium (Na+) concentration of tatarian dogwood seedlings irrigated with saline solutions at an EC of 5.0 and 10.0 dSm1 increased 11 and 40 times, respectively, compared with the control, whereas chloride (Cl-) concentration increased 25 and 33 times, respectively. In Expt. 2, tatarian dogwood seedlings were irrigated at a substrate volumetric water contents (volume of water/volume of substrate, VWC) of 15%, 20%, 25%, 30%, 35%, 40%, or 45% using a sensor-based automated irrigation system for 60 days. Results showed that drought stress decreased plant growth of tatarian dogwood seedlings with a reduction of 71%, 85%, and 87% in plant height, leaf area, and shoot DW, respectively, when VWC decreased from 45% to 15%, but all plants survived at all VWC treatments. Significant reductions of photosynthesis (Pn), stomatal conductance (gS), transpiration rate (E), and water potential were also found in plants at a VWC of 15%, compared with other VWCs. However, SPAD readings and Fv/Fm of tatarian dogwood seedlings were similar among the VWCs. In conclusion, tatarian dogwood seedlings were sensitive to the salinity levels tested in this study but could survive at all tested substrate volumetric water contents and exhibited resistance to drought conditions.

published proceedings

  • HORTSCIENCE

author list (cited authors)

  • Liu, Q., Sun, Y., Altland, J., & Niu, G.

citation count

  • 0

complete list of authors

  • Liu, Qiang||Sun, Youping||Altland, James||Niu, Genhua

publication date

  • February 2020