Approximation in Sobolev Spaces by Kernel Expansions Academic Article uri icon

abstract

  • For interpolation of smooth functions by smooth kernels having an expansion into eigenfunctions (e.g., on the circle, the sphere, and the torus), good results including error bounds are known, provided that the smoothness of the function is closely related to that of the kernel. The latter fact is usually quantified by the requirement that the function should lie in the "native" Hilbert space of the kernel, but this assumption rules out the treatment of less smooth functions by smooth kernels. For the approximation of functions from "large" Sobolev spaces W by functions generated by smooth kernels, this paper shows that one gets at least the known order for interpolation with a less smooth kernel that has W as its native space. © 2002 Elsevier Science (USA).

author list (cited authors)

  • Narcowich, F. J., Schaback, R., & Ward, J. D.

citation count

  • 22

publication date

  • January 2002